Kinetic regularities of conversion of ozone complexes with arenes

E. V. Avzyanova, N. N. Kabal'nova, and V. V. Shereshovets*

Institute of Organic Chemistry, Ufa Scientific Center of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation.

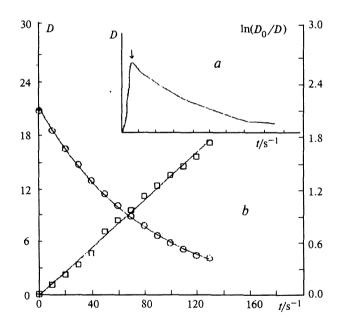
Fax: +7 (347 2) 356 066

The kinetic regularities of conversion of ozone complexes with several substituted benzenes (ArX = C_6H_5Me , C_6H_5Et , $C_6H_5CHMe_2$, $C_6H_5CMe_3$, C_6H_5F , C_6H_5Cl , m-BrC₆H₅Me, and $C_6H_5CH_2Cl$) were studied by spectrophotometry. The rate of consumption of ArX · O₃ in a CH_2Cl_2 —ArX solution obeys the kinetic equation $W = k_0[ArX \cdot O_3] + k_1[ArX \cdot O_3][ArX]$. The values of the rate constants k_0 and k_1 for the complexes studied were determined at $-60 \div 0$ °C.

Key words: ozone, aromatic hydrocarbons, ozone complexes; reaction mechanism, rate constants; ozonolysis.

Ozone forms π -complexes with arenes ArX \cdot O₃, which are sufficiently stable at low temperatures and whose absorption maxima lie in the range from 340 to 540 nm. ^{1,2} It has been shown previously³ that the consumption of the C₆H₅CHMe₂ \cdot O₃ and C₆H₅Cl \cdot O₃ complexes in the presence of cumene and chlorobenzene occurs simultaneously by first- and second-order reactions. In this work, the effect of the structure of the complexes on the kinetics of their decomposition was studied.

Experimental


The kinetics of transformation of $ArX \cdot O_3$ was studied by spectrophotometry, measuring the optical density of the complex in the liquid phase over time. Experiments were carried out at $-60 \div 0$ °C in a 1-cm thermostated quartz cell provided with an attachment with a bubbler and a thermocouple. The cell containing 1.5 mL of a solution of substrate ArX (0.5–10 mol L⁻¹) in CH₂Cl₂ was placed into the cell chamber of an SF-26 spectrophotometer and thermostated to the specified temperature. A cooled ozone-oxygen mixture (40 mL min⁻¹, 1–2 % O_3) was introduced into the cell to accumulate ArX $\cdot O_3$. When the concentration of $ArX \cdot O_3$ in the solution reached the specified value, the introduction of the gas mixture was stopped. The change in the optical density of $ArX \cdot O_3$ was recorded automatically at 377–383 nm (Fig. 1).

Toluene (1), ethylbenzene (2), cumene (3), tert-butylbenzene (4), fluorobenzene (5), chlorobenzene (6), m-bromotoluene (7), benzyl chloride (8), and methylene chloride were purified by the known procedures.⁴

Results and Discussion

It is established that at $[ArX \cdot O_3]_0 \ll [ArX]_0$ ($[ArX \cdot O_3]_0$ and $[ArX]_0$ are the initial concentrations of

aromatic hydrocarbon and the complex, respectively) the consumption of $ArX \cdot O_3$ obeys a first-order law in the whole temperature range and the range of concentrations of the reagents studied (see Fig. 1). The effective constants k' were determined from the semilogarithmic

Fig. 1. a, Kinetic curves of accumulation and consumption of $m\text{-MeC}_6H_4\text{Br}\cdot\text{O}_3$ ($[m\text{-MeC}_6H_4\text{Br}\cdot\text{O}_3]_0=5.5$ mol L⁻¹, -30 °C), the moment when the introduction of ozone is stopped is indicated by the arrow; b, kinetic curve of consumption of $m\text{-MeC}_6H_4\text{Br}\cdot\text{O}_3$ and its semilogarithmic anamorphosis (1, 2).

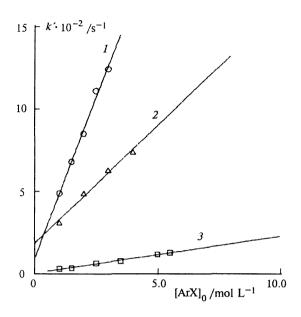


Fig. 2. Dependence of the effective first-order rate constant k_0 of consumption of the complex on the concentration of aromatic hydrocarbon(-30 °C): I, cumene; 2, toluene; 3, m-bromotoluene.

anamorphoses of the kinetic curves of consumption of $ArX \cdot O_3$. Under the conditions studied, the k' values depend linearly on the concentration of ArX (Fig. 2):

$$k' = a + b[ArX], \tag{1}$$

where a/s^{-1} and b/L mol⁻¹ s⁻¹ are the empirical constants. The a and b values at various temperatures are presented in Table 1.

Therefore, the rate equation for the consumption of the complex takes the form:

$$W = -d[ArX \cdot O_3]/dt = a[ArX \cdot O_3]$$
+ b[ArX \cdot O_3][ArX]. (2)

Table 1. Kinetic parameters of consumption of $ArX \cdot O_3$ in CH_2Cl_2

T/°C	ArX	$(a) k_0 / s^{-1}$	(b) k ₁ /L mol ⁻¹ s ⁻¹
-47 -30 -10 0 -30 -30 -30 -30 -30 -30 -47 -30	C ₆ H ₅ CI - - - C ₆ H ₅ F C ₆ H ₅ CH ₂ CI m-MeC ₆ H ₄ Br C ₆ H ₅ Me C ₆ H ₅ Et C ₆ H ₅ CHMe ₂	$(8.33\pm1.40)\cdot10^{-4}$ $(3.75\pm0.59)\cdot10^{-3}$ $(3.76\pm1.36)\cdot10^{-3}$ $(9.14\pm0.57)\cdot10^{-4}$ $(9.62\pm1.12)\cdot10^{-4}$ $(1.99\pm0.11)\cdot10^{-3}$ $(1.90\pm0.30)\cdot10^{-2}$ $(2.63\pm0.21)\cdot10^{-2}$ $(2.56\pm0.28)\cdot10^{-3}$ $(5.18\pm0.38)\cdot10^{-3}$	(8.12±1.66) · 10 ⁻⁵ (8.52±7.40) · 10 ⁻⁵ (3.14±0.13) · 10 ⁻³ (7.72±0.32) · 10 ⁻³ (4.83±1.20) · 10 ⁻⁴ (2.94±0.60) · 10 ⁻³ (1.40±0.10) · 10 ⁻² (1.25±0.11) · 10 ⁻² (9.82±0.75) · 10 ⁻⁴ (6.50±0.20) · 10 ⁻³ (3.86±0.19) · 10 ⁻²
-30	C ₆ H ₅ CMe ₃	$(5.04\pm1.20)\cdot10^{-3}$	$(7.02\pm3.20)\cdot10^{-3}$

An increase in the k' value as the concentration of ArX increases can be explained in terms of a scheme that takes into account the reaction of the complex with the substrate along with its transformation according to the first-order law:

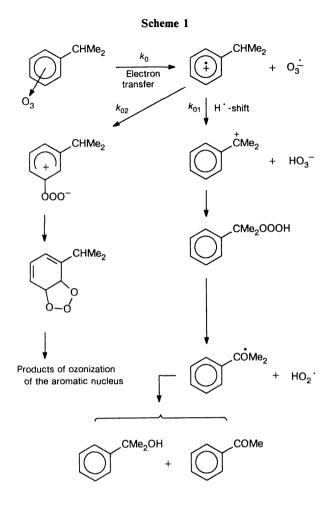
$$ArX \cdot O_3 \xrightarrow{k_0} P_0, \qquad (a)$$

$$ArX \cdot O_3 + ArX \xrightarrow{k_1} P_1, \qquad (b)$$

where k_0/s^{-1} , k_1/L mol⁻¹ s⁻¹ and P₀, P₁ are the rate constants and the products of the corresponding stages.

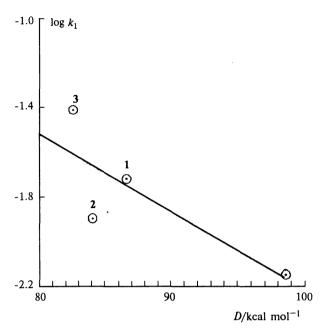
It follows from the scheme that the rate of consumption of the complex can be described by Eq. (2) at $k_0 = a$ and $k_1 = b$, and the effective first-order rate constant k' is equal to

$$k' = W_{ArX \cdot O_3}/[ArX \cdot O_3] = k_0 + k_1[ArX].$$
 (3)


The relative contribution of reactions (a) and (b) to the overall process depends on the nature of ArX, its concentration, and the temperature. At high concentrations of ArX, the consumption of ArX \cdot O₃ in the reaction with the substrate is the predominant route of the transformation of the complex. For example, $W_1/W_0 \approx 11$ for the cumene complex at -30 °C and $[C_6H_5CHMe_2]_0 = 3$ mol L^{-1} .

The activation parameters of the transformation of the complexes of O_3 with cumene and chlorobenzene were calculated from the data in Table 1 (see Table 2). The pre-exponential factors A_1 are the same as those in the reactions of ozonolysis of aromatic compounds and olefins.⁵ At the same time, the A_0 value is anomalously low, which is likely related to the polar nature of the irreversible decomposition of $ArX \cdot O_3$.

The products of oxidation of both the side chain and the aromatic nucleus are formed from the complexes of O₃ with alkyl-substituted benzenes. Thus, cumene hydrotrioxide, cumene hydroperoxide, dimethylphenyl-carbinol, acetophenone, and ozonides formed due to the decomposition of the cumene complex have been found.^{3,6,7} Their formation can be explained in terms of the mechanism suggested by W. A. Pryor^{6,7} (Scheme 1).


Table 2. Activation parameters of transformation of $ArX \cdot O_3$

Parameter	C ₆ H ₅ Cl·O ₃	$C_6H_5CHMe_2 \cdot O_3$
A' (E'/kcal mol ⁻¹)	$(6.88\pm1.92)\cdot10^8$	$(3.44\pm0.68)\cdot10^6$
	(11.60±2.78)	(8.72 ± 1.35)
$A_0 (E_0/\text{kcal mol}^{-1})$	$(7.08\pm1.55)\cdot10^4$	(186.2±19.10)
• •	(8.89 ± 1.21)	(4.74 ± 0.24)
$\Delta S_0^{\neq}/\text{kcal mol}^{-1} \cdot K^{-1}$	-37.93	-49.74
0 ,	$(3.71\pm1.15)\cdot10^8$	$(7.94\pm0.55)\cdot10^9$
$A_1 (E_1/\text{kcal mol}^{-1})$	(13.44±3.03)	(12.58 ± 0.71)

In this scheme, an electron transfer is the key stage, which results in the formation of aromatic radical cation ArH · + and radical anion O3 -, which transform subsequently to the ion pair and hydrotrioxide. The mechanism of formation of hydrotrioxide due to the intracage recombination of the ion pair (R⁺+HO₃⁻) has been suggested by S. W. Benson on the basis of the thermochemical calculations.⁸ Another channel of the transformation of radical cations and anions is the formation of the products of ozonization of the aromatic nucleus. No hydrotrioxides are formed from complexes of halogen-substituted benzenes, therefore, the reaction occurs only to the aromatic nucleus. This mechanism is evidenced by a high negative value of the constant (ρ) in the correlation $\log k_0 = (-2.02\pm0.36) - (2.14\pm1.20)\sigma_1, r = 0.906$ (for σ_1 see Ref. 9), the low values of the activation entropy $\Delta S_0^{*} = -49.7$ and -37.9 for the complexes with cumene and chlorobenzene at -30 °C (see Table 2), and a very noticeable effect of the polarity of the medium on k_0 .¹⁰

The reaction of $ArX \cdot O_3$ with ArX can occur at both the aromatic ring and the side chain. The relative contribution of these reactions to the overall process is likely to depend on the nature of ArX. The aromatic nucleus is attacked in the case of fluorobenzene and chlorobenzene. According to the literature data, for the reactions

Fig. 3. Dependence of $\log k_1$ on the C-H bond strength (D). The values of D are taken from Ref. 12. The numbers of the points correspond to the numbers of the compounds in the text.

of C_6H_5Me , $C_6H_5CD_3$, and $C_6D_5CD_3$ with $C_6H_5Me \cdot O_3$, $C_6H_5CD_3 \cdot O_3$, and $C_6D_5CD_3 \cdot O_3$ $k_1 = 1.4 \cdot 10^{-2}$, $1.4 \cdot 10^{-2}$, and $1.2 \cdot 10^{-2}$ mol⁻¹ L s⁻¹ (-30 °C),¹¹ respectively; hence, the reaction directed at the side chain is insufficient for toluene. However, this route can play a noticeable role for alkylbenzenes with the weak C—H bond in the alkyl substituent. For example, the rate constants k_1 differ substantially (see Table 2) for cumene and *tert*-butylbenzene with equal induction constants of substituents ($\sigma = -0.197$), which can be explained by the easiness of the attack of a weak C—H α -bond in isopropylbenzene. The dependence of log k_1 on the bond strength is shown in Fig. 3.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 33-03-05231).

References

- P. S. Baily, J. W. Ward, T. P. Carter, J. E. Nieh, and C. M. Fischer, J. Am. Chem. Soc., 1974, 96, 6136.
- V. V. Shereshovets, L. G. Galimova, and V. D. Komissarov, Izv. Akad. Nauk SSSR, Ser. Khim., 1992, 2488 [Bull. Russ. Acad. Sci., Div. Chem. Sci., 1992, 41, 1321 (Engl. Transl.)].
- 3. V. V. Shereshovets, N. M. Korotaeva, I. M. Kitaeva, and V. D. Komissarov, *React. Kinet. Catal. Lett.*, 1986, 32, 443.
- Organic Solvents. Physical Properties and Methods of Purification, Ed. A. Weissberger, Intersci. Publ., New York— London.
- 5. S. D. Razumovskii and G. E. Zaikov, Ozon i ego reaktsii s

- organicheskimi soedineniyami [Ozone and Its Reactions with Organic Compounds], Nauka, Moscow, 1974 (in Russian).
- W. A. Pryor, M. Ohto, and D. F. Church, J. Am. Chem. Soc., 1982, 104, 5813.
- W. A. Pryor, M. Ohto, and D. F. Church, J. Am. Chem. Soc., 1983, 105, 3614.
- P. S. Nangia and S. W. Benson, J. Am. Chem. Soc., 1980, 102, 3105.
- A. J. Gordon and R. A. Ford, The Chemist's Companion, Wiley, New York, 1972.
- R. K. Yanbaev, V. V. Shereshovets, and V. D. Komissarov, React. Kinet. Catal. Lett., 1992, 48, 255.
- 11. V. V. Shereshovets, R. K. Yanbaev, and V. D. Komissarov, React. Kinet. Catal. Lett., 1992, 46, 7.
- 12. V. V. Takhistov, Organicheskaya mass-spektrometriya: Termokhimicheskoe opisanie izomerizatsii i fragmentatsii ionov i radikalov v gazovoi faze [Organic Mass Spectrometry: Thermochemical Description of Izomerization and Fragmentation of Ions and Radicals in the Gas Phase], Nauka, Leningrad, 1990 (in Russian).

Received March 13, 1995; in revised form June 29, 1995